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ABSTRACT

Suppose that we are given a picture having approxi-
mately piecewise constant gray level. Each point P has a
largest neighborhood N(P) that is entirely contained in
one of the constant regions , and the set of maximal N(P)’s
(I.e. , N( P) ’s no t conta ine d In other N( P) ’s) cons titutes an
economical description of the picture , generalizing the
Blum “skeleton ” or medial axis transformation. The picture
can be smoothed , without excessive blurring, by averagin g
over each N(P). By taking differences between pairs of
touching maxima l N(p)’s, the edges between the regions can
be detected; since this edge detection scheme Is not based
on symme tri cal detec ti on opera tors , It Is not hand i ca pped
when two adjacent regions differ greatly In size.

The su pport of the. Directorate of Mathematical and Informa-
tion Sc i ences , U. S. Air Force Office of Scientific Re-
searc h , un der Contract F44620-72C-0062, is gratefully
acknowledged , as Is the help of Mrs. Shelly Rowe In prepar-
ing this paper.
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_1. Introduction

This paper develops a general method of constructing

piecewise approximations to a picture . The picture Is

assumed to be composed of a set of regions , each having

approximately constant gray level (possibly noisy). Some

examples of such pictures are shown in Figure 1.

The approximations are defined by sets of neighbor-

hoods , each of which is contained in one of the regions ,

but is not contained in any other such neighborhood. (A
~1

more precise definition is given in Section 3, and the im-

plementation of the method is described in Section 4.) For

4 brevity , we shall refer to this type of approximation from

now on as a SPAN (for Spatial Piecewise Approximation by

Neighborhoods).

SPANs have several important applications in picture

processing and analysis:

a) The SPAN is a generalization of the Blum [1)

“s ke l eton ” or “medial axis transformation ” (MAT).

Previously, the MAT has been defined only for

________________  

/ 
pictures that are explicitly segmented Into

objects and background; see Sections 2-3. Thus

~‘1
~~~~~~~~~~ c.- . the SPAN , like the MAT , provides a compact repre-

[J
sentation of the given picture. It also provides

.

~ 

a basis for describing the shapes of the regions

that comprise the picture -- e.g., branches on the
SPAN s kele ton corres pond to lobes on the re gi ons.

Ia~
—, __ __ 
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b ) In cons truc ti ng the SPAN , a maxima l neighborhood

P1(P) of each point P is first found that is con-

tained in the region to which P belongs. Thus the

picture can be smoothed , without blurring the

edges of the regions , by replacing the gray level

at every point P by the average gray level taken

over N(P). Examples of smoothings obtained in V

this way are given in Section 5.

c) At the edges of the regions, pairs of maximal SPAN

neighborhoods -- contained in the regions on the

two sides of the edge -— will touch. Thus if we

compute the difference between the average gray

levels taken over a pair of such touching neighbor-

hoods , and output this difference at the point

where the neighborhoods touch, we will obtain out-

lines of the region edges. This method of edge

detection , unlike most previous methods , is not

V based on the use of symmetrical edge detection

operators; hence it is not handicapped when V

attempting to detect the edge between two regions

that differ greatly in size. Examples of region

edges detected by this approach are shown In

Section 6.
S .

Other approaches to piecewise approximation of plc-

tures have been investigated by Pav lidis and his students

(2-5]. TypIcally, such approaches begin with an initial
V 

partit i on of the pi c ture i nto cells , and modify the parti- 

~~~~~~~~~~~~~~~~~~~~~ — —
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tion by merging and splitting cells , and adjusting cell

boun dar ies , while Insuring that a given approximatIon

criterion remains satisfied on each piece of the part ition.

These approaches too can be used to smooth the picture with-

out blurring the region edges, and to detect these edges.

But the SPAN approach provides an alternative which is of

potential interest for several reasons:

1) By constructing an approximation to the picture

out of neighborhoods , the SPAN provides a basis

for obtaining structural descrIptions of the re-

gions in the picture , similar to those provided

by the MAT , but applicable directly to unsegment—

ed , noisy pictures .

2) The SPAN is constructed by a “parallel” order-

independent process of neighborhood growing and

V 

nonmax imum suppression. This process could be

Implemented very efficiently on a parallel array-

processing computer.

3) Because of the simplicity of the operations used 
V

to cons truct the SPAN , it can be regarded as a

possible computational model for visual perception

of region shapes in piecewise constant scenes.

__________~ V~~~~~~~~ - — — --~~~~
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V 2. The medial axis transformation (MAT)
V Over ten years ago, Blum (1) p ropose d a met hod of

I representing a shape S In terms of the set of maximal disks

that are contained in S. Specifically, for each point (x,y)

In 5, let Nr(xsy) be a disk (I.e., a circular neighborhood)

of radius r centered at (x,y). For small values of r , 
V

Nr(X,y) will be entirely contained in S (if (x,y) Is on the

V 
border of 5, this will only be true for r~0), but for

larger r ’s it will extend outside S. Let N(x ,y) be the

largest disk centered at (x,y) that is entirely contained

V in s~ 
V 

We call N(x,y) maxima l if It is not contained In any

other N(u ,v). It is easily seen that the union of the

V maxima l disks N(x ,y) is exactly S. (Indeed , eac h N( x ,y) Is
contained in 5; but every point of S Is contained In at

least one of the N(x ,y)’s.] T hus the set of centers and
radii of the maximal disks completely determines S. Blum

called this representation of S its medial axis transforma-

tion (MAT). Note that the set of centers of the maximal

disks constitutes a sort of “skeleton ” of S.

The “disks ” used in the above definition need not be V

circular; any family of shapes can be used. When S is an

V object in a dig ital picture , It Is more conven ien t to use
V squares rather than circles. A discussion of the digita l

MAT , and its use to represent objects in digital pictures,

can be found In (6-7] A simple example of a d1~ Ital MAT
is shown In Figure 2

Blum ’s definition of the MAT applies only to objects
b~

~~~

V 

~~~
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. that have been explIcitly extracted from a picture — -  or

equivalently, to two—v a lued pictures , In which we can call

the set of points having one value the “object” , and the

remaining points the “ba ckground ” . The definition is not

directly applicable to pictures in which there are many
V gray levels. A generalization to the grayscale case was

given by Levi and Montana n [8], extending earlier work by

Rutovitz [9). This generalization is based on the relation-

ship between Blum ’s MAT and the distances from points of S
V 

to the outside of S. Specifica ll y, let N(x ,y), the largest

disk centered at (x,y) that is entirely contained in 5,

F have radius r(x ,y). Then r(x ,y) is the shortest distance

from (x ,y) to the border of S. (In the digital case, if we

use square “disks ” , this is still true for a suitably

modified notion of “distance ” , e. - “city block” or “chess-

board” distance; see [10).) If (x,y) is a point of the

MAT , I.e., the center of one of the maximal disks , it is
V 

easily seen that it is a local maximum of the function
. r (x ,y), and conversely.

We can now defi ne a “gray-weighted distance ” , in a

- grayscale picture f, as follows : Let S be any subset of

the picture, and let p be any path (lying inside 5) from a

po int (x,y) of S to the border of S. We can define a

“gray-weighted length” of p by integrating the gray levels

of f along p; this integral grows rapidly if p passes

through points of high gray level , and slowly if It passes 
V

through low-level points. Note that if f 1 inside 5,

the gray-weighted length becomes the length in the ordinary 
V
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sense. (In the dig ita l case , the integra l becomes a dis-

crete sum.) Let us define the gray-weighted distance from

(x ,y) to the border of S as the shortest gray-weighted path

length from (x,y) to the border. We can then define the 
V

“gray-weighted MAT” (GMAT) as the set of points of S whose

gray-weighted distances to the border of S are local maxima ,

together with their associated distances. V 

V

The two-valued MAT is very sensitive to noise, particu-

larly noise that is located near the center of the object

S. This is illustrated in Figure 3, where we see how the

presence of a single noise point at the center of an object

can drastically alter the MAT. The GMAT would be less

sensitive to noise , since the effects of gray level fluctua - V

tions on the gray-weighted length of a path should tend to

cancel out. However, the presence of noise should create

many “noisy ” local maxima in the GMAT . Also , the GMAT is

defined only when a subset of the given picture has been

specified; it is not defined directl y for the picture it-

self.

In this paper we develop a somewhat different approach V

to defining a GMAT for arbitrary grayscale pictures. Our

approach assumes that the picture ’s gray level is approxl-

mately piecewise constant (except for noise), but does not

require us to specify the region whose GMAT Is to be con-

structed , nor to explicitly segment the picture Into the

regions. It yields GMATs for all the constant regions

F simultaneously, thus providing a representation for the
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entire picture. At the same time , It Is designed to be

relatively insensitive to noise ,

~1
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1 3. Approximation of piecewise constant pictures usin g
maximal neighborhoods: The SPAN

Suppose that we are given a picture whose gray level
V 

is approximately piecewise constant; in other words , the

picture can be partitioned into a set of regions R 1, in each

of which the gray level Is approximately constant. Some V

examples of such pictures were shown in Figure 1. ~
‘

V Le t (x ,y) be a point of one of the constant regions R ,

and let Nr(x~
y) be the disk of radius r centered at (x,y),

as in Section 2. We would like to find the largest r = r(x ,y)

such that N r ( X
~

Y)  is entirely contained in R. Our approach

will be to apply some simple statistical tests to the gray

level population in Nr(x y)s in order to decide whether

Nr (x
~
y) Is contained in a single constant region or overlaps

several of the reglons. * In designing these tests, we

will assume that the gray level in each of the regions R is

normally distributed (e.g., that R has constant gray level V

corrupted by Gaussian noise).

We began by calculating the mean and standard

deviation ar of the gray levels in the neighborhood
V 

N r(X~
Y )
~ 

for each r. Using these , we can compute confidence

V 
intervals around the “true ” mean -- i.e., for a given prob-

ability p, we can determine a neighborhood ‘r of ~r 
(in

V units of or) such that , with probability p , the mean of the

*A related approach was used in [11] In an attempt to deter-
mine an optima l degree of smoothing to use at each point of
a picture. In (12], an analogous method was used to find
natural piecewise constant approximations of one-dimensional

V 

strings of data. 

V V V~~~~~~~~~~~V~~~ ~~~~V VV V V
V VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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gray level population of wh ich N r (X~
Y) is a sample lies

inside If Nr(x~
y) lies within a single region R , this

should be small , since N r (x
~
y) is a sample of a normally

distributed gray level population. On the other hand , if

Nr(x~
y) overlaps more than one region , its gray level dis-

tribution will tend to become mult imodal , and the internal

will become larger. Thus we can assume that N,, is con-

tained in R as long as the length of I,, remains below some
V threshold t. (The details will be given in Section 4.)**

For a given choice of confidence p and maximum confi-

V 

dence interval length t,we can thus decide which neighbor-

hoods N r (X~
Y) are contained in a single region R. Let

N(x ,y) be the largest such neighborhood , as in Section 2.

V 
We call N(x ,y) q-maximal if it does not overlap any other

N(u ,v) by fraction q or more of i t s  own area. For example ,

if q= 1 , N(x ,y) is q-maxima l if it is not contained in any

other (larger) N(u ,v). The examples in the next section

used q=l , but any q � 0.8 would have given the same results
1 ~V 

(s3e the end of Section 4).
V We shall call the set of q-maximal neighborhoods the

q-SPAN of the given picture f , and the set of their centers

the “q-skeleton ” of f. Note that these depend on the values

of p and t , as wel l as q. In the next Section we describe

a specific implementation of this definition , for the case

**Another possible approach might have been to use a test
for mu ltimodality to detect that N (x,y) overlaps more
than one region. Such tests were tsed by Chow and Kaneko
[13] to determine local thresholds for segmenting a plc-
tune.
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of a dig ita l picture , and give examples of the results
I obtained.

V
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4. Implementation of the SPAN

In the present digital implementation , we used upright

square neighborhoods of sizes 2k+1 by 2k+l (corresponding

to a chessboard distance measure). Thus the neighborhood

of radius k contains (2k+1)2 points.

V Using Student’ s t distribution , for a given confidence

p , we can find a value t~ such that

Prob { < t } = p
V 

~~~ 
Sk/(2kIl) 

P

V 

-- i.e., such that the absolute difference between the

i ne i ghborhood mean and th e popula ti on mean ~i , measured i n

units of sk/(2k+l), is less than t~ with probability p.

Here we assume th a t k ~ 1 , an d we define to be the

correc ted sam p le s tandar d dev i a t ion

=

V where °k is the standard deviation of the gray levels in

the neighborhood . We d.vide 5k by 2k+1 to reflect the fact

that the variability of the mean should decrease with

V the square roo t of the sample size [14].

- Thus the p confidence Interval about the sample mean
~

V I

1 (= the Interval within whi ch the true mean lies , with prob-

ability p) is

= (
~ k-tpsk/ (2k+1)5 ~k

+tp5k 2
~~~~~

~~~~~~~~~ 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ SV~~~~~_S 
V _ . S .



- 

TI~ _ _ _ _

V 

At each point (x,y), we choose the largest k such that the

length Il k 1 (i.e., 2tpsk/(2k+l)) is less than a given thres-

hold t. This defines the neighborhood N (x,y). If

I l k l � t for k ~ 1 , we take k=0 as a default option , i.e.,

we defi ne N(x ,y) to be (x,y) Itself. We then find maximal

N(x ,y)’s as described in Section 3.

SPANs were computed for the ten pictures in FIgure 1 ,

us i ng p = .95 , t = .85 , and q = 1. In these examples ,

onl y three neighborhood sizes were used: lxi, 3x3 , and 5x5

(i.e. , radi i of 0, 1 , and 2). The radii of the neighbor-

hoods N(x ,y) for these ten pictures are displayed in Figure

4, with radius values 0, l,and 2 represented by gray levels

20, 40, and 60 , respec tively. Figure 5 shows the results

V of suppress ing (= setting to zero) the points whose N(x ,y)’s V

are nonmax imal.

In these examples , since radii greater than 2 were not

allowed, we obtain a thick area of points having gray

level 60 (corresponding to radius 2) wherever a region is

more than 5 points wide. This could have been avo ided by

allowing larger radi i; we used only a few rad ii here in

order to avo id excessive computational cost in developing

and testing the SPAN programs . The computer time required

V 

to produce each of the pictures in Figure 5 was 12 seconds

V on a Un ivac 1108.
V~.

J
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V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V S V V ~~~ . V ~~~~~~~ V V - V V - V V _ V V V V



F _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

V ~~~~~~~~~~~~~~~~~~~~~~~~~~ -V-V~ ~~~~~~ -V~~ V -VV~~ 
V~~~V V~~V _______

- - —-V_V--V V__V .— -V

SI
The results obtained for q*l would be the same for any

q in the Interval (.8, 1). This is because the largest

neighborhood size used was 5x5 , and if two 5x5 upright

squares overlap by more than 80%, they must be identica l .

If larger neighborhood sizes are allowed , the results be-

come more sensItive to the choIce of q. Allowing q < 1

should reduce the sensitivIty of the SPAN to noise.

The resul ts of varying t are shown in Figure 6 . (The

effects of changing p would be similar.) It is seen that

ta king t = .6 , ra ther than .85 , yields thicker skeletons ,

but is capable of detectin g lower contrasts between regions.

-V -- 

- 
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5. Applica tIon of the SPAN to smoothing

Since each neighborhood N(x ,y) is contained within one

of the regions R , we should be able to smooth the picture

without blurring the edges of the regions by replacIng the

gray level at (x,y) by the average gray level measured over

N(x ,y). An early discussion of smoothing by avera ging over

regions of variable size , which could grow as long as they

did not cross over edges , was given by Roet ling (15]. This

approach should , in principle , yield optimal smooth ings ,

since It averages over the entire region containing each

point; but this requires that the picture be explicitly

V segmented Into the regions , which is a computational ly

costly process. A simpler approach is to use a neighborhood

of each point , but to allow each neighborhood to be as V

large as possible, as long as it does not go outside the V

V region containing that point -- i.e., to use the N(x ,y)’s

as neighborhoods. An unsuccessful attempt to automatically

determine an averaging neighborhood size at each point of a

picture was reported in [11].

V The results of smoothing the ten pictures of Figure 1

V 
using the N(x y)’s as averaging neIghborhoods are shown in V

Figure 7 . For comparison purposes, the results of averaging

over a 3x3 square neighborhood at every point are shown in

V 

Figure 8. It is seen that the 3x3 smoothings blur the re-

gion edges , while the SPAN smoothings do not Note, how-

ever , that the SPAN smoothings do not smooth out the noise

4~~~~~~~~~~ j near the region edges , w here th e N(x ,y) neighborho ods have
~~~~~:~.

V V
V. :1

zero radius 
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6. App lication of the SPAN to edge detection V

A problem with most methods of edge detection is V

that they make use of symmetrical edge detection operators ,

V and so cannot take full advantage of the uniformity of the

regions between which an edge Is to be detected, if these
V regions are of very different sizes. For example, suppose

that regions A and B have widths a and b , where a < b , and

that we detect edges by taking differences of averages corn- V

puted over neighborhoods of size c. If c > a , our detector V

V will be too big for region A , so that parts of the picture

lying beyond A will be included in the A average. But if

c ~ a < b , our detector sees only part of region B , and

cannot take full advantage of B’ s uniformity . For a dis-

cussion of this problem see [16], and compare [12].

Here again , an optimal approach would be to use the V

regions themselves as averaging neighbothoods. (Once we

- 

have extracted the regions , we know where their edges are ;

but we still need to do the averaging In order to deter-

mine the strengths of these edges.) However , exp licitly

determining the regions is computationally costly. A

simpler idea is to use the maxima l N(x ,y)’s as averaging
V 

neighborhoods. If P is a point where two such N(x ,y)’s

V V: 
touch , we can take the difference of averages over the

N(x ,y)’s as the edge value at P Note that P may be in-

ten or to a re gi on (e g , if a region is rectangular , there

will be many maximal N(x,y)’s inside It); but in such a

case the difference of averages will be close to zero. On

the other hand , if P is on an edge between two contrasting V

h VS -- - —~~~~~~~ ~~~~- - -~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~
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regi ons , there should be maxima l N(x ,y)’s contained In the V

two re gi ons and meeting at P , and the difference of their
V averages will be high. Thus the edge values computed In

t. this way should be high along region edges, and low or zero

elsewhere . (In the pictures shown below , edge va l ues l ess
than 6 have been suppressed.)

The results of applying this edge detection scheme to

the pictures of Figure 1 , using pairs of adjacent , non- V

overlapping maxima l N(x ,y)’s, are shown in Figure 9. For

V com par i son , the output of a Roberts -like gradient

(max((p-s (, k-ri) in the neighborhood ~~
) for the same

pictures is shown in Figure 10. The Roberts gradient gives

good results when the edges are sharp and the regions are

small , but for larger regions with blurred edges, the SPAN
edge detector gives better results.

F 
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7. DIscussIon and conclusions

In this paper we have defined a technique for piece-

V wise approximation of pictures , based on maximal neighbor-

hoods , that can be applied to pictures which are approx i- 
V

mately piecewise constant. As the examples In Figure 1

V show , several real-worl d classes of pictures can be treated

V 
as piecewise constant for purposes of SPAN construction .

V 

On the other hand , for a picture that contains a major gray

level ramp , the SPAN method breaks down , since it will
V attempt to approximate the ramp by a staircase.

I It should be possible, in princip le , to generalize the

SPAN approach to a wider class of pictures , e.g., pictures

• that are approximately piecewise linear , rather than piece-

w i se cons tan t , In gray level . Here , for each neighborhood

we would test the hypothesis that its gray level

population is a good fit to a ramp, say in the least

squares sense. The largest r for which this fit is

sufficiently good would define the neighborhood N(x ,y),

and we could then find the maximal N(x ,y)’s as above.

It should also be possible to generalize the SPAN to

picture s containing textured regIons . Suppose that a re-

gion consists of small constant -value elements on a con-

stant value background. Then for small values of the radius

V 

k In Section 4, we will obtain small maximal neighborhoods

contained in individual texture elements and spaces. As k

gets larger , the neighborhoods will overlap both texture

elements and background , so that will become large and

V V V V V V~- VV____V V -V~~~~~~
V 
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the size I I I  of the confidence Interval will exceed the

threshold t. But as k gets still larger , 5k stops increas-

lng (as long as the neighborhood stays within the region),

while the 2k+l in the denominator continues to increase, so

that ‘1 k’ may again drop below t. Thus if we consider only . V

k’s that are large compared to the texture element size, we

should still be able to find maximal neighborhoods correspond-

ing to the textured regions.

The practical utility of the SPAN approach is somewhat

limited , at present , by its computational cost. This

limitation could be overcome if a suitable parallel process-

ing capability were available. In any case, the SPAN

approach is a useful conceptual contribution , as a generaliza-

tion of Blum ’s MAT concept to noisy, unsegmented pictures.

Like the MAT, it provides natural, concise approximations

to such pictures that can be used for purposes of encoding,

recognition , and description.

A
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a) c) e) • g) 1)

b) d) f) • h) j)

Figure 1. Some examples of pictures that are V
approximately piecewise constant.
Each picture is a 32x32 pixel array
having 64 possible gray levels. The V

V noisy versions have had normally dls-1 1  trlbuted noise added with a mean of
zero and a standard deviation of 4
gray levels.

V a) Port ion of a LAND SAT Image of the
V Monterey , California area; b) Noisy

version of (a); c) White blood cell;
d) Noisy version of Cc); e) Chromo-
some ; f) Noisy version of (e);
g) Disk; h) Noisy version of (g);
I) U-shaped object; j) Noisy version

~ of (I).
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•0
• 1 • • • 1 •

• 1 • 1 •
. • 2 • •
• • 2 • •
• • 2 • •

• • •
0 • 0

Figure 2. A simple object in a digital picture and
its MAT , based on “disks ” that are
diagonally oriented squares. Points which
are centers of maximal squares are in-
dica ted by integers that give the radii of
these squares; the other points of the
object are indicated by dots.

. 0
0 0 0

0 0  0 0L • • •  0 0 0
• 0

(a) (b)

V Figure 3. Sensitivity of the MAT to noise , a) The
MAT of a diagonally oriented square is a 

V 
V

single point at the center of the square . •
V 

- 
b) If the center point of the square is 

V

V deleted , the MAT of what rema i ns cons i sts
of all the points, since for any of the

V rem~Tii’ing poin ts , the maximal “disk” now
has radius zero.
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a) c) e)~~~ i)~~~

b) d) f) I  h)a

Figure 4. Radii of the neighborho ods N(x,y) for the pictures
V in Fi gure 1 , using p = .95 and t = .85. Onl y the

values 0, 1 , and 2 were allowed; they are repre-
sented by gray levels 20, 40, and 60, respect ively.

a) c) e) ~~ g) I)

V b) d) f) ~~ h)

Figure 5. Results of suppressing nonma ximal neighborhoods V
for the p ictures in Figure 1. The gray level at
(x ,y) -is set to zero if the neighborhood N(x ,y)I Is contained in a larger neighborhood N(u ,v);

L otherwise , the same gray levels as in Figure 4
V are used.

V V
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e)I V

b) d)~~~~ f) ~~

Figure 6. Results of taking t = .6, rather than V

.85 , i n cons truc ti ng SPANs for F ig ures
V la , c , e. Par ts a , c, e show th e

radii , and parts b , d, f th e resul ts
V of suppressing nonmaxima.

I all e) 

~~ Ill 
V

‘ I  V

V b) d) f) ~~ h) j)

Figur e 7. Results of smoothing the pictures in
V Figure 1 by averaging over the

ne i ghbor hoods N(x ,y).

a ) c ) e) • g ) 1)

b ) a d ) a f) • h) i) q
V~

V Figure 8. Results of smoothing the same pictures 
V

by averaging over a 3x3 neighborhood
of each point.
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a) a c) e) 
~~ 

g) I) a
b) d) f) h) j)

Figure , 9 . Resul ts of detecting edges on the
picture s in Figure 1 using diff-
erences of averages over the
maximal ne ighborhoods N(x ,y).

a) c) e) 
~~ 

g) i)

b) a d) a f ) • h) I
Figure 10. Resul ts of detecting edges on the

same pictures usi ng a Roberts -like
gradient operator.
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